

CC BY-SA: www.strobl-f.de/ueb91.pdf

9. Klasse Übungsaufgaben9Wurzeln, binomische Formeln01

- 1. Gib den Definitionsbereich an!
 - (a) $\sqrt{x-36}$
 - (b) $\frac{1}{\sqrt{x+36}}$
 - (c) $\sqrt{x^2-12x+36}$
- 2. Vereinfache:
 - (a) $\sqrt{500} + 3\sqrt{98} 5\sqrt{8} 3\sqrt{45}$
 - (b) $\sqrt{64k^2}$
 - (c) $\left(\sqrt{\frac{x^5y}{5a}} : \sqrt{\frac{x^3y^3}{a^2}}\right) \cdot \sqrt{\frac{25x}{a}}$ (x, y, z > 0)
- 3. Mache den Nenner rational:

(a)
$$\frac{1}{\sqrt{2}}$$

(b)
$$\frac{\sqrt{2}-\sqrt{125}}{\sqrt{5}}$$

(c)
$$\frac{2}{3-\sqrt{5}}$$

4. Zahlen wie $\sqrt{2}$ sind keine Brüche (also nicht in der Zahlenmenge $\mathbb Q$); sie sind in der Menge $\mathbb R$ der reellen Zahlen enthalten. So ist $\sqrt{2}$ auch nur ungefähr gleich 1,41.

Begründe mit dem Taschenrechner ohne Benutzung der $\sqrt{}$ -Taste, warum 1,41 nicht genau $\sqrt{2}$ ist und finde die dritte der unendlich vielen Dezimalen von $\sqrt{2}$.

- 5. Binomische Formeln (weitere Übungen zu binomischen Formeln siehe ueb73.pdf):
 - (a) Löse die Klammern auf:

i.
$$(mn - p)(p + mn)$$

ii.
$$(-r-s)^2$$

(b) Faktorisiere; klammere hierbei zuerst, falls möglich, gemeinsame Faktoren aus:

i.
$$11x^2 - 66x + 99$$

ii.
$$9x^2 - 121$$

iii.
$$81x^4 - 1$$

iv.
$$3x^2 + 39x + 507$$

(c) Ergänze:

i.
$$x^2 - 10x + \ldots = (\ldots)^2$$

ii.
$$\frac{1}{100}x^2 + x + \dots = (\dots)^2$$

6. Vermeide häufige Fehler:

(a)
$$,(a + b)^3 = a^3 + b^3$$
." FALSCH! Verbessere!

(b) "Wenn ich a^5 von a^7 wegnehme, bleibt a^2 , also $\frac{a^7-a^5}{a^3-a^2}=\frac{a^2}{a}=a$." FALSCH! Verbessere!