

CC BY-SA: www.strobl-f.de/lsg128a.pdf

12. Klasse Lösungen (alter LP)12Lagebeziehung Gerade – Gerade08

1. Parallele Ri.vektoren $\vec{u}_h = (-2)\vec{u}_g$. Aufpunkt von h (1|4|3) liegt nicht auf g (denn $1 = 2 + \lambda$, $4 = 6 + 2\lambda$, $3 = -1 - \lambda$ ergibt aus erster Gleichung $\lambda = -1$ im Widerspruch zur dritten Gleichung). Also sind q und h echt parallel.

2.

- (a) g und h haben gleichen Aufpunkt A, die Ri.vektoren zeigen aber in verschiedene Richtung (nicht Vielfache). Also schneiden sich g, h in A(3|0|1).
- (b) g und k haben gleiche Ri.vektoren. Aufpunkt von k (7|7|5) liegt nicht auf g (denn $7=3-5\lambda$, $7=0-5\lambda$, $5=1+\lambda$ führt bereits in den ersten beiden Gleichungen zum Widerspruch). Also sind g und k echt parallel.

3.

- (a) Ri.vektoren \vec{u}_1 , \vec{u}_2 sind nicht parallel. Gleichsetzen ergibt $-1+\lambda=1, -1=2+\mu, 1-3\lambda=4+3\mu.$ Also $\lambda=2, \mu=-3$, Probe in dritte Gleichung stimmt. Also schneiden sich g_1 und g_2 . Schnittpunkt S(1|-1|-5). Schnittwinkel φ aus $\cos\varphi=\frac{|\vec{u}_1\circ\vec{u}_2|}{|\vec{u}_1|\cdot|\vec{u}_2|}=\frac{|1\cdot0+0\cdot1+(-3)\cdot3|}{\sqrt{1+0+9}\cdot\sqrt{0+1+9}}=0,9$, also $\varphi\approx25,84^\circ.$
- (b) Ri.vektoren \vec{u}_2 , \vec{u}_3 parallel ($\vec{u}_3=2\vec{u}_2$). Aufpunkt von g_3 (2|4|8) eingesetzt in g_2 ergibt bereits in der ersten Zeile 2 = $1+0\mu$ einen Widerspruch, also sind g_2 und g_3 echt parallel.

Abstand des g_3 -Aufpunkts A(2|4|8) von der Geraden g_2 :

Fußpunkt X als allg. g_2 -Geradenpunkt ansetzen: $X(1|2 + \mu|4 + 3\mu)$. Bedingung: $\overrightarrow{AX} \perp g_2$, also $\overrightarrow{AX} \circ \vec{u}_2 = 0$;

$$\begin{pmatrix} 1-2 \\ 2+\mu-4 \\ 4+3\mu-8 \end{pmatrix} \circ \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} = 0;$$

$$\begin{pmatrix} A \\ g_3 \\ (-1)\cdot 0 + (-2+\mu)\cdot 1 + (-4+3\mu)\cdot 3 = 0; \\ 10\mu = 14; \ \mu = 1,4; \ \text{also } X(1|3,4|8,2).$$

(Fortsetzung von Aufgabe 3(b)) Gesuchter Abstand $d(g_2, g_3) = |\overrightarrow{AX}|$ $= \sqrt{(1-2)^2 + (3,4-4)^2 + (8,2-8)^2}$ $= \sqrt{1,4} \approx 1,18.$

- (c) Ri.vektoren $\vec{u}_3 || \vec{u}_4 (\vec{u}_4 = -1.5\vec{u}_3)$. Aufpunkt von $g_4 (2|-4|-16)$ eingesetzt in g_3 ergibt $2=2, -4=4+2\sigma, -16=8+6\sigma$; aus zweiter Gleichung also $\sigma=-4$, Probe in erster Gleichung stimmt sowieso, in dritter Gleichung $-16=8+6\cdot (-4)$ stimmt ebenfalls, also sind g_3 und g_4 identisch.
- (d) Ri.vektoren \vec{u}_1 , \vec{u}_4 sind nicht parallel. Gleichsetzen ergibt $-1 + \lambda = 2$, $-1 = -4 3\tau$, $1 3\lambda = -16 9\tau$. Aus erster und zweiter Gleichung folgen $\lambda = 3$ und $\tau = -1$; Probe in dritter Gleichung $-8 \neq -7$; g_1 und g_4 sind also windschief.

4

(a) Aufpunkt von g ist D, Richtungsvektor von g ist $\overrightarrow{BS} = \begin{pmatrix} -3 - (-6) \\ 3\sqrt{3} - 0 \\ 0 - 0 \end{pmatrix}$, also $g: \overrightarrow{X} = \begin{pmatrix} 0 \\ 2\sqrt{3} \\ 2\sqrt{6} \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 3\sqrt{3} \\ 0 \end{pmatrix}$. Analog $h: \overrightarrow{X} = \begin{pmatrix} -6 \\ 2\sqrt{3} \\ 2\sqrt{6} \end{pmatrix} + \mu \begin{pmatrix} -3 \\ 3\sqrt{3} \\ 0 \end{pmatrix}$. Gleichsetzen liefert $3\lambda = -6 - 3\mu$, $2\sqrt{3} + 3\sqrt{3}\lambda = 2\sqrt{3} + 3\sqrt{3}\mu$, $2\sqrt{6} = 2\sqrt{6}$. Multiplikation der ersten Gleichung mit $\sqrt{3}$ und Addition der zweiten Gleichung liefert $2\sqrt{3} + 6\sqrt{3}\lambda = -4\sqrt{3}$, also $\lambda = -1$, $\mu = -1$ und somit Schnittpunkt $T(-3|-\sqrt{3}|2\sqrt{6})$.

(b)
$$x_3$$
-Achse: $\vec{X} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \tau \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

Ri.vektoren nicht parallel. Gleichsetzen: $-4 + 2\sigma = 0$, 0 = 0, $2\sqrt{6} = \tau$. Also $\sigma = 2$, $\tau = 2\sqrt{6}$, Probe in zweiter Gleichung stimmt. Somit schneiden sich YZ und die x_3 -Achse.