

CC BY-SA: www.strobl-f.de/lsg125a.pdf

12. Klasse Lösungen (alter LP) **12** Geradengleichungen **05**

1.

Q liegt nicht auf q, denn:

$$\begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \qquad \stackrel{\Rightarrow}{\checkmark} \lambda = -1$$

R(0|2|1) liegt auf a, denn:

$$\begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$
 ⇒ $\lambda = -2$ Probe: passt! Probe: passt!

S liegt nicht auf g, denn:

$$\begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \quad \stackrel{\Rightarrow}{\bowtie} \lambda = 3$$

Für die x_3 -Koordinate von T gilt: $0 = -1 - \lambda$, also $\lambda = -1$, also T(1|4|0).

$$AB: \vec{X} = \begin{pmatrix} -2 \\ -2 \\ 8 \end{pmatrix} + \lambda \begin{pmatrix} 6 \\ 6 \\ -4 \end{pmatrix}, \quad \lambda \in \mathbb{R}.$$

C liegt auf g: Wähle $\lambda = \frac{2}{3}$

D liegt auf q: Wähle $\lambda = -2.5$.

$$AB: \vec{X} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}, \quad \lambda \in \mathbb{R}.$$

Ansatz: $F(-1 + 3\lambda | -1 -$

$$DF \perp g, \text{ also } \begin{pmatrix} -1 + 3\lambda - 2.5 \\ -1 - \lambda + 0.5 \\ 1 - 1 \end{pmatrix} \circ \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix} = 0.$$

$$(-3.5 + 3\lambda) \cdot 3 + (-0.5 - \lambda) \cdot (-1) + 0 = 0.$$

-10 + 10 λ = 0. λ = 1. Also $F(2|-2|1)$.

Abstand
$$d(D, AB) = |\overrightarrow{DF}| =$$

Abstand
$$d(D, AB) = |\overline{DF}| =$$

$$= \sqrt{(2-2.5)^2 + (-2+0.5)^2 + (1-1)^2} =$$

$$= \sqrt{2.5}.$$

Dreiecksfläche A_{ABD} : [DF] ist die Höhe im Dreieck ABD auf der Grundlinie [AB], also $A_{ABD} = \frac{1}{2}\overline{AB} \cdot \overline{DF} =$

$$= \frac{1}{2}\sqrt{3^2 + (-1)^2} \cdot \sqrt{2,5} = \frac{5}{2}.$$

Gleiches Ergebnis bei Berechnung mit dem Vektorprodukt: $A_{ABD} = \frac{1}{2}|AB \times AD| = \frac{5}{2}$ (vgl. ueb119.pdf, Aufgabe 2(c)).

4.

- (a) Aufpunkt (0|0|0), also ist g eine Gerade durch den Ursprung des Koordinatensystems.
- (b) x_2 -Komponente konstant 5, also ist h parallel zur x_1x_3 -Ebene.

Punktkoordinaten können direkt in eine Geradengleichung übertragen werden ("allgemeiner Geradenpunkt rückwärts"):

$$g: \vec{X} = \begin{pmatrix} 0\\14\\12 \end{pmatrix} + a \begin{pmatrix} 1\\0\\-3 \end{pmatrix},$$
$$a \in \mathbb{R}.$$

(b) Die drei Punkte haben jeweils gleichen Abstand voneinander.

Mögliche Formulierungen:

 $P_{0,5}$ ist Mittelpunkt von P_0 und P_1 . P_{-1} ist der Spiegelpunkt von P_1 bei Spiegelung am Punkt P_0 .

(a) Die x_3 -Koordinate wird 0:

$$p: \vec{X} = \begin{pmatrix} 3\\1\\0 \end{pmatrix} + \tau \begin{pmatrix} 2\\-1\\0 \end{pmatrix},$$
$$\tau \in \mathbb{R}.$$

(b) y-Achsenabschnitt (0|2,5) als Aufpunkt. Wegen Steigung $-\frac{1}{2}$ Richtungsvektor ,2 nach rechts, 1 nach unten", also

$$\vec{X} = \begin{pmatrix} 0 \\ 2.5 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \\ \lambda \in \mathbb{R}.$$

Dies ist übrigens die in die x_1x_2 - bzw. xy-Grundebene eingebettete Gerade aus Teilaufgabe (a), denn der Punkt (0|2,5|0)liegt auf p, wie man mit $\tau = -1.5$ sieht.