

CC BY-SA: www.strobl-f.de/lsg110a.pdf

11. Klasse Lösungen (alter LP) 11 Steckbriefaufgabe, Optimierung **10**

- 1. Steigungsdreieck $m=\frac{y_1-y_2}{x_1-x_2}=\frac{2013-2014}{2012-2015}=\frac{1}{3}.$ Ansatz also: $y=\frac{1}{3}x+t$ P einsetzen: $2013=\frac{1}{3}\cdot 2012+t\Rightarrow t=1342\frac{1}{3}.$ Also Geradengl.: $y=\frac{1}{3}x+1342\frac{1}{3}.$
- 2. Ansatz $f(x) = ax^3 + bx^2 + cx + d$, also $f'(x) = 3ax^2 + 2bx + c$.

Punkt (1 - 64), also f(1) = -64: a + b + c + d = -64.

Waagrechte Tangente bei x = 1, also f'(1) = 0: 3a + 2b + c = 0.

Nullstelle x = 5, also f(5) = 0: 125a + 25b + 5c + d = 0.

Punkt (0|-65), also f(0) = -65: d = -65.

Gleichungssystem nach Einsetzen von d = -65:

$$a+b+c=1 \qquad |\cdot(-1)| |\cdot(-5)$$

$$3a + 2b + c = 0 \quad | \cdot 1$$

$$\frac{125a + 25b + 5c = 65}{2a + b = -1} | \cdot (-20)$$

$$\frac{120a + 20b = 60}{80a = 80} \quad | \cdot \hat{1}$$

80a = 80.

Also a = 1, also (aus 2a + b = -1) b = -3, also (aus a + b + c = 1) c = 3.

Somit
$$f(x) = x^3 - 3x^2 + 3x - 65$$
.

Nullstellen: f(x) = 0, $x_1 = 5$, Polynomdivisi-

on
$$(x^3-3x^2+3x-65)$$
: $(x-5)=x^2+2x+13$. $x^2+2x+13=0$ liefert wegen $x_{2/3}=\frac{-2\pm\sqrt{4-4\cdot1\cdot13}}{2\cdot1}$ keine weiteren Nullstellen.

3. $f(x) = (x+a)e^{bx}$, also (Produktregel) $f'(x) = 1 \cdot e^{bx} + (x+a)e^{bx} \cdot b = (1+bx+ab)e^{bx}$. Punkt (0, 1), also f(0) = 1: $ae^0 = 1$, also a = 1.

Steigung bei x = 0 ist 3, also f'(0) = 3: 1 + ab = 3.

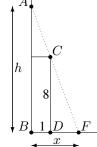
Einsetzen von a=1 liefert b=2. Also $f(x)=(x+1)e^{2x}$

4. G: Zu minimieren: Leiterlänge $\overline{AF} = \sqrt{h^2 + x^2}$

N: Dreieck ABF ähnlich zu Dreieck CDF, also $\frac{\overline{AB}}{\overline{BF}} = \frac{\overline{CD}}{\overline{DF}}$, d. h.

$$\frac{h}{x} = \frac{8}{x-1}$$

A: Aus N folgt $h = \frac{8x}{x-1}$, also $\overline{AF} = \sqrt{(\frac{8x}{x-1})^2 + x^2}$. Dieser Ausdruck wird minimal, wenn der Ausdruck unter der Wurzel $r(x) = (\frac{8x}{x-1})^2 + x^2 = \frac{64x^2}{(x-1)^2} + x^2 = \frac{64x^2 + x^2(x-1)^2}{(x-1)^2} = \frac{x^4 - 2x^3 + 65x^2}{(x-1)^2}$ möglichst klein ist.



Variable geschehen).

D:
$$r'(x) = \frac{(x-1)^2 \cdot (4x^3 - 6x^2 + 130x) - (x^4 - 2x^3 + 65x^2) \cdot 2(x-1)}{(x-1)^4} = \frac{2x(x^3 - 3x^2 + 3x - 65)}{(x-1)^3}$$
 ($(x-1)$ kürzen, Zähler zusammenfassen, $2x$ ausklammern)

E:
$$r'(x) = 0$$
 liefert $2x(x^3 - 3x^2 + 3x - 65) = 0$, also $x_1 = 0$ oder $x^3 - 3x^2 + 3x - 65 = 0$.

Die Nullstelle von letzterem Polynom kann mit $x_2 = 5$ "geraten" werden; weitere Nullstellen sind nicht vorhanden (\rightarrow Aufgabe 3). $\frac{r' > 0 \quad r' < 0 \quad r' > 0}{\text{steigt}}$ 5 steigt Also ist r und damit die Leiterlänge \overline{AF} minimal für x=5.

5. Zu optimierende Größe: pq = p(1-p) (Damit ist bereits im ersten Schritt auch die Nebenbedingung q = 1 - p und das Ausdrücken durch nur eine

Umbenennung $x \leftrightarrow p$: $f(x) = x(1-x) = x - x^2$, $x \in [0, 1]$.

Extremwerte suchen: f'(x) = 0; $x = \frac{1}{2}$.

Differenzieren: f'(x) = 1 - 2x. Da es sich bei f um eine nach unten geöffnete Parabel mit Nullstellen 0 und 1 handelt, ist bei $x=\frac{1}{2}$, also bei $p=\frac{1}{2}$ das obige Produkt maximal (nämlich $p(1-p)=\frac{1}{4}$).

Wegen des Wertebereichs [0, 1] gibt es daneben noch Randminima bei p=0 und p=1mit minimalem Wert p(1-p) = 0.