8. Klasse TOP 10 Grundwissen

Lineare Gleichungssysteme

<u>09</u>

Beispiel:

$$2x - 3y = 7 (I)$$

$$4x + 5y = -8 \qquad \text{(II)}$$

Einsetzverfahren

Löse eine der Gleichungen nach einer Variablen auf und setze in die andere Gleichung ein:

I nach
$$x$$
 aufgelöst: $x = \frac{7}{2} + \frac{3}{2}y$ (I')

In II eingesetzt:
$$4 \cdot (\frac{7}{2} + \frac{3}{2}y) + 5y = -8$$

Jetzt hat man eine Gleichung, die nur noch y enthält (x ist eliminiert worden); löse diese Gleichung:

$$14 + 6y + 5y = -8$$
$$y = -2$$

Berechne die andere Unbekannte durch Einsetzen in I':

$$x = \frac{7}{2} + \frac{3}{2} \cdot (-2) = \frac{1}{2}$$

Die Lösungsmenge enthält genau ein Zahlenpaar als Lösung:

$$L = \{(\frac{1}{2}; -2)\}$$

Additionsverfahren

Schreibe die Gleichungen ordentlich untereinander und multipliziere jede Gleichung so, dass die Koeffizienten einer Variablen Gegenzahlen werden; anschließend werden beide Seiten der Gleichungen addiert. Beispiel:

Jetzt Gegenzahlen -15/+15! Diesen Zwischenschritt schreibt man in der Regel nicht hin, sondern addiert gleich beide Seiten der Gleichungen im Kopf $(5 \cdot 2x + 3 \cdot 4x = 22x \text{ usw.}).$

 Π

Die andere Unbekannte y berechnet man durch Einsetzen in I oder II:

in I:
$$2 \cdot \frac{1}{2} - 3y = 7$$

$$y = -2$$

$$L = \{(\frac{1}{2}; -2)\}$$

Man hat jeweils Wahlmöglichkeiten, welche Variable man eliminiert; wähle geschickt!

Spezialfälle

In Ausnahmefällen kann sich ein Widerspruch von der Sorte 0=1 ergeben (dann ist $L=\{\}$) oder eine allgemeingültige Gleichung der Sorte 0=0 (dann hat man eigentlich nur eine Gleichung mit unendlich vielen Lösungen).

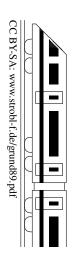
Graphisches Lösungsverfahren

Jede Gleichung wird nach derselben Variablen aufgelöst; die sich dadurch ergebende lineare Funktion wird im Koordinatensystem als Gerade dargestellt; gemeinsame Punkte stellen die gesuchte "simultane" Lösung dar.

Beispiel: Autofahrt einer Mutter (erfahren mit 1 $\frac{\mathrm{km}}{\mathrm{min}}$) mit ihrer Tochter (Führerscheinneuling mit 0,8 $\frac{\mathrm{km}}{\mathrm{min}}$). Die Tochter soll gleich lange wie die Mutter fahren. Sie wollen eine Strecke von insgesamt 7 km zurücklegen. Wie lange darf die Tochter/die Mutter am Steuer sitzen?

Sei x die Fahrzeit der Tochter in min, y die der Mutter.

$$I. \ x = y$$


II.
$$0.8 \cdot x + 1 \cdot y = 7$$

Aufgelöst nach
$$y$$
: I. $y = x$

II.
$$y = 7 - 0.8x$$

Der Grafik entnimmt man den Schnittpunkt mit $x \approx 3.9$, $y \approx 3.9$. Tochter und Mutter dürfen je ca. 3,9 min am Steuer sitzen.

Vorteil des graphischen Verfahrens: Man kann weitere Punkte relativ leicht interpretieren; z. B. (5|3) bedeutet, dass zwar 7 km zurückgelegt werden, aber die Tochter würde länger als die Mutter fahren; bei (5|5) würden Mutter und Tochter gleich lange am Steuer sitzen, aber es würden mehr als 7 km zurückgelegt werden.

